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A simple model, based on random matrix theory, is utilized for the description of energy levels and
level dynamics in mixed regular and chaotic quantum systems. We find that different types of level
statistics, such as nearest neighbor distributions, long-range correlations, wave function analysis,
curvature distributions, etc., show dramatically different sensitivity to the “chaoticity parameter.”
Differences between long-range and short-range fluctuation measures are explained in terms of lo-

calization of the wave functions.
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I. INTRODUCTION

Random matrix theory plays an import role in the
study of quantum signatures of chaos, “quantum chaos,”
see, e.g., [1]. By performing level statistical analyses of
the quantum levels of several simple systems, such as the
hydrogen atom in a strong magnetic field, quantum bil-
liards, etc., one has been able to identify the transition
from order to chaos in the classical system as a subse-
quent change of the fluctuation properties of the corre-
sponding quantum system from Poisson (completely un-
correlated spectrum) to GOE (Gaussian orthogonal en-
semble), see, e.g., [2,3]. This kind of evidence led Bohigas
et al. to conjecture [4] that the quantum mechanical ver-
sion (in the semiclassical limit) of a classically chaotic
system has fluctuations which depend only on the un-
derlying symmetry of the physical problem, and implies
a universal behavior of the “chaotic” quantum system.
Chaotic systems with time reversal symmetry generically
show fluctuations which follow GOE statistics.

By considering the motion of eigenvalues under the
change of an external parameter other types of correla-
tions of the quantum system may be studied (see, e.g.,
[5]). These types of correlations are complementary to
those that can be obtained from a static spectrum, and
may have a direct relation to experimental quantities,
such as the magnetic susceptibility or the dynamic mo-
ment of inertia in nuclear physics. In Refs. [6] and [7] the
possibility was discussed to relate these two measurable
quantities to quantum chaos.

The GOE is based on random matrix theory (RMT)
that was originally developed by Wigner for the descrip-
tion of the structure of highly excited atomic nuclei.
From the RMT several properties have been derived con-
cerning the behaviour of fluctuations of the energy spec-
trum and the eigenfunctions (see [8,10,9,2]). Recently, it
has become clear that also level dynamical distributions
are universal, see, e.g., [11, 12]. One basic question we
discuss in this paper is if we can conclude that a quantum
system can be described by GOE when we have found
that, for example, the nearest neighbor energy-spacing
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distribution follows a GOE distribution. That is, if ob-
serving GOE properties of one kind of statistical mea-
sure implies that also other kinds of statistical measures
give GOE. This question is certainly quite relevant since
it is common to draw conclusions about the full system
from one kind of statistical measure only. With a limited
stretch of energy levels, as may be the case if the analysis
is based on experimental data, it may be impossible to
perform, for example, a reasonable long-range correlation
analysis (such as the Ajs statistics [13]).

In Sec. II we propose a simple model of a general
(time reversal) quantum system based on RMT, that can
describe a smooth transition from “order” (Poisson) to
“chaos” (GOE) through the variation of one parameter,
a “chaoticity parameter.” In addition, dynamics is in-
troduced into the model through an explicit (linear) de-
pendence of the Hamiltonian on an external parameter
which can be considered as a “time” variable. The aim of
the paper is then to study how different statistical mea-
sures behave as the “chaoticity parameter” is changed
(Sec. III). In Sec. III A we study how the level density
changes, while local fluctuation measures, such as the
nearest neighbor energy-spacing distribution (NND) and
the stiffness of the spectrum (Aj; statistics and its vari-
ance), are studied in Sec. III B. The distribution of wave
function components is considered in Sec. III C, and the
distribution of energy level curvatures is studied in Sec
III D. Finally, in Sec. IV we summarize and discuss the
obtained results.

II. A RANDOM MATRIX MODEL

The starting point and original motivation for the in-
troduction of random matrix models is a complicated
quantum mechanical system. The complexity may arise
due to an underlying classical chaotic dynamics, in a few-
body or many-body system, and one aim is to describe
the quantum signs of this. In order to mimic the transi-
tion from “order” to “chaos” in the quantum system we
propose the following random matrix model:
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H(I) = Ho + AH, + A, (1)

(Ho)ij (S 5,‘jG (0, \/%) , (2)
(Hi)i; € (1-645)G (0, \/%), 3)
(A)ij € JijG(O, O'A\/;), (4)

i.e., H(I) constitutes an ensemble of N-dimensional ran-
dom matrices where Hy and A are diagonal and H;
is nondiagonal, all with Gaussian distributed real ma-
trix elements with mean value m and standard devia-
tion o,G(m,o0). The two parameters A and o4 deter-
mine the properties of the system. Throughout the pa-
per we shall choose 04=1. By choosing the “chaotic-
ity parameter,” A, in the interval [0,1] we may study
the smooth transition from Poisson to GOE. At A=0 we
have H(0) = HF?**°" and at A=1 H(0) = HSCE. The
external parameter, I, describes “time,” but it could as
well describe other variables such as angular momentum,
strength of an external magnetic field, or an (intrinsic)
quadrupole deformation parameter of a deformed atomic
nucleus. For a given choice of Hy, AH; and A, the time
variable, I, is subsequently varied.
The eigenvalue problem

H¢; = E;¢; (5)

is solved by numerical diagonalization of an ensemble of
N x N matrices (as a standard we shall take N=400).
When A = 0 the energy spectrum, E;(I), corresponds
to a set of unperturbed bands. All bands correspond
to states with different sets of good quantum numbers,
and are straight lines with sharp crossings when plotted
vs I. The subsequently added interaction, AH;, corre-
sponds to a residual interaction which acts between all
the bands and breaks all the good quantum numbers. In
the classical analog the Hamiltonian function Hy + IA
is integrable, while all constants of motion are destroyed
by AH, for A # 0. Due to the KAM theorem chaos is
expected to set in smoothly in the classical system as the
value of A is increased from zero.

In general, the slopes 8F;/8I correspond to “veloci-
ties,” but could as well correspond to (the negative of)
rotational frequencies (if I is the angular momentum),
quadrupole moments (if I is a quadrupole deformation
parameter), etc. The parameter, o4, controls the disper-
sion in slope, i.e., in velocity. The curvatures, 2E;/01%,
correspond to “accelerations,” but could also correspond
to —1/J®), where J(? is the dynamical moment of in-
ertia (if I is the angular momentum), the magnetic sus-
ceptibility (if I is the magnetic field strength), etc.

where

III. STATISTICAL MEASURES

In this section we perform a numerical study of the
statistical properties of energy eigenvalues and eigenfunc-
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tions of the ensemble of Hamiltonians described by our
simple model, Egs. (1)—-(4). We typically let the ensemble
be represented by 30-50 matrices, over which the calcu-
lated properties are averaged. As mentioned above, we
choose the matrix sizes to be N = 400, and usually, in
order to avoid truncation effects, only the central 60%
of the spectrum is used. In general, we shall study the
static properties of the levels and their wave functions at
I=0. When the statistical properties of the eigenvalues
are studied, a renormalization is first performed so that
the average level density everywhere is equal to 1. We
use the method of Fourier transformations developed in
[14]. Definitions of the different statistical measures can
be found, e.g., in [2], where also approximative analytical
expressions for the limiting distributions (corresponding
to full GOE or Poisson) can be found. If necessary, we
use, however, numerical expressions deduced within the
present model for H(0; A = 0) and H(0; A = 1).

A. Level density

The level density obtained in RMT is a global prop-
erty, and is usually not given any significance in the ap-
plication of the theory in describing (generic) fluctuation
properties of quantum chaotic systems.

In the two limits, Poisson and GOE, simple expressions
exist for the level density in the limit N — oo, namely
the Gaussian distribution as imposed by Eq. (2),

N _iINE?
p(E) = 47re ’ (6)

and the Wigner semicircle,

p(B) = o=V — B2, )

for A=0 and A=1, respectively. The N independence of
the Wigner semicircle level density is due to our choice
of N dependence of matrix elements in Egs. (2) and (3).
The transition between the two level density limits oc-
curs around A = 0.1, see Fig.1. With a total distribution
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FIG. 1. Level density vs excitation energy or level number

for different A values. Note the drastic change from narrow
Gaussian to (Wigner) semicircle as A approaches 1.
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width of the order of N~1/2 [Eq. (6)] and N° [Eq. (7))
we obtain an average energy-level distance, d ~ N
and ~ N1, respectively. Or, in other words, the two
distribution limits correspond to the average level densi-
ties, p ~ N3/2 and 5 ~ N. For intermediate A values we
find that the mean level density is well reproduced by an
interpolation between the two limits as

N3/2
4AV/N +TN-242

p(A,N) = (8)

B. Energy fluctuations

From several calculations (see, e.g., [15, 16]) it seems
as if GOE properties appear when the size of the pertur-
bation (i.e., the size of the nondiagonal matrix elements)
on an average is of the size of the mean level spacing of
the unperturbed energy levels (i.e., the average distance
between the diagonal matrix elements). In the model
above (at I=0) this is obtained when

1 2 1 1
e~y A~ =
A—s ~y/ - = N (9)

which implies that the GOE properties are expected at
much smaller values of A than what corresponds to the
full GOE. For N=400 we thus expect the GOE properties
already when A = 0.02 [with proper constants inserted
in Eq. 9]. Notice that with this argument GOE prop-
erties are expected for an infinitely small A value in the
limit N — oo. Also notice that the relevant parameter
is neither N nor A but rather the product NA [15].

In Fig. 2 the nearest neighbor energy-spacing distri-
butions are shown for some different values of A. As
expected, the GOE curve is reproduced for A > 0.02. If,
on the other hand, we study the Aj statistics [Fig. 3(a)]
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or quite similarly the variance of the Aj; statistics
[Fig. 3(b)], for A = 0.02 the corresponding GOE curve is
followed up to a maximum value, Lyax = 20, of the cor-
relation distance, L, in the energy spectrum. For larger
L values both A3 and Var(As3) deviate from the GOE be-
havior. When A is decreased the GOE curve is followed
up to a smaller L., value, etc. In Fig. 4 the L., values
are shown as a function of the “chaoticity parameter,” A.

Obviously, the GOE character of the spectrum is ful-
filled over a limited range in energy only. The reason
for this finite range of the GOE correlations is that the
wave functions are rather localized for small A values
[16]. The spread of the wave function on basis states is
shown in Fig. 5 for some different values of A. For small
A values only a few components are involved in the wave
function. For larger A values the number of components
increases and also the spreading width increases. Two
distant wave functions do not show any overlap in their
basis state components, and therefore cannot show any
other correlations than those of completely regular, un-
mixed wave functions.

The localization length, or spreading width of the wave
functions, I',, initiated by AH; can be estimated using
Fermi’s Golden Rule,

1
A=0.02
o 08 0.8
= 0.6 0.6
2 T
g 0.4 0.4 A
- oo T
% 1 2 3 4 % 1 2 3 4
Level spacing Level spacing

FIG. 2. Nearest neighbor distributions for different values
of the mixing parameter A. The GOE (solid line) and Poisson
(dashed line) limits are shown for comparison.
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FIG. 3. (a) As statistics and (b) the variance of Aj for

different values of the mixing parameter A. The GOE and
Poisson limits are shown for comparison.
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FIG.4. Lpax as afunction of A deduced from the variance

of As (circles) and from Eq. (12) (solid line).

AR gV _ A?
I, = 27po((AH;)2) =~ 27rp0—]—v—. (10)

When the mutual energy distance between two wave
functions is larger than, say 2.5I',, there are no GOE
correlations. This gives

2
Lmax =~ Z.Sﬁl—‘” ~ 57T—ﬁoﬁw (11)

By inserting the expression for the mean level density
from Eq. (8), po = p(0) and p = p(A), we obtain a
relation between L.« and A ,
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FIG. 5. The spread of the wave function on basis states.
Two different wave functions, ¢; = > ai. | v), correspond-
ing to state =170 (solid lines) and ¢=230 (dashed lines) are
shown for three different A values.
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FIG. 6. Distribution of wave function components for dif-

ferent A values. The solid line shows the Porter-Thomas dis-
tribution.

57 1
Lopax ~ —AZN? 12
" 7 4AVN +TN-34° (12)

that excellently reproduces the calculated values, see the
solid curve in Fig. 4. For much larger A values than
shown in Fig 4, L,ax obviously deviates from this esti-
mate; a saturation of the localization length sets in that
is connected with the finite size of the matrices.

C. Wave function fluctuations

In Fig. 6 it can be seen that the square of the wave
function components follows the Porter-Thomas distri-
bution (i.e., the size of the wave function components is
Gaussian distributed) when A > 0.1. This means that
the GOE limit is reached at considerably larger A values
than for which, e.g., the corresponding NND follows the
GOE curve [16]. Not until the wave functions are com-
pletely delocalized will the wave function components be
Gaussian distributed over all basis states. This transi-
tion is global rather than local and is connected with the
change of the level density from a narrow Gaussian peak
to the much broader Wigner semicircle distribution as
was discussed in Sec. III A (see Fig. 1).

D. Level dynamical properties

The motion of energy levels in the quantum mechani-
cal system described by H(I) may be studied by letting
the external parameter I vary. One may then define and
study new statistical properties that describe the dynam-
ics of the system. One such dynamical feature that can
be obtained from the energy-level spectrum, E; vs I, is
the curvature.

Already in 1974 Pomphrey [17] emphasized the con-



152 PER PERSSON AND SVEN ABERG 52

012} A=0.001 A=001
008 \

0.04

P(Intkl)
=

012 A=01 A=1

0.08

0.04

lo

5 -0 -5 0 5 10 -5 0 5
Inikl

FIG. 7. Curvature distributions for four different values of
the mixing parameter, A=0.001, 0.01, 0.1, and 1. As a com-
parison the expression for the generic curvature distribution
[Eq. (14) with v=1] is shown in each figure. The curvatures
are scaled and plotted on a logarithmic scale.

nection between large curvatures in the energy spectrum
and chaotic motion in the corresponding classical system.
Later on expressions could be derived for the tail of the
curvature distribution [18, 19],

P(K) ~ |K|7"*%, (13)

asymptotically valid for large curvatures. Here K is the
calculated curvature, K = d?E/dI?, and v depends only
on the underlying symmetry of the system, v=1, 2, and
4 for GOE, GUE (Gaussian unitary ensemble), and GSE
(Gaussian symplectic ensemble), respectively. Based on
numerical experiments and led by simplicity, Zakrzewski
and Delande [11] subsequently proposed an expression
for the full curvature distribution of a quantum chaotic
spectrum,

P(k) = C,(1 + k%)~ (GFY, (14)

where C,, is a normalization constant (=1/2 for v=1), k
is the scaled curvature, k = K[np((dE/dI)?)]~!, where
p is the level density. Since in our model the average
slope ((dE/dI))=0 we have ((dE/dI)%)=02, where o, is
the average dispersion in slope. Note that the scaled
curvature distribution depends only on the symmetry
class. The expression for the full curvature distribution,
Eq. (14), has recently been proven rigorously for all three
symmetry classes by von Oppen [12].

From our model [Egs. (1)—(4)] we may calculate the
curvature distribution also for mixed systems, and in
Fig. 7 scaled curvature distributions are shown for
A=0.001, 0.01, 0.1, and 1. The curvatures were numeri-
cally calculated as finite differences. In these calculations
the step size, § I, was chosen small enough that the second
derivatives were independent of §I. As is seen in Fig. 7
the generic distribution is not obtained until A = 1, i.e.,
when the model corresponds to full GOE.

IV. SUMMARY AND DISCUSSION

Based on a random matrix model we have studied dif-
ferent kinds of statistical measures for eigenvalues, eigen-
functions, as well as the curvature distribution obtained
from the level dynamics. Intermediate distributions be-
tween Poisson and GOE have been studied, and for each
case the transition to the generic GOE distribution has
been identified.

An important summarizing conclusion from the
present study is that if a spectrum analysis, of, e.g., the
nearest neighbor energy-level distribution, shows GOE
properties, one may not assume automatically that all
other properties connected with GOE are fulfilled. This
suggests carefulness in drawing conclusions about quan-
tum chaos based on established GOE properties of some
statistical measures.

We have shown that different types of level statistics,
such as nearest neighbor distributions (NND), A3 statis-
tics, wave function analysis, curvature distributions, etc.,
show dramatically different sensitivity to the “chaotic-
ity parameter,” A, that interpolates our random matrix
model between regularity (Poisson) and chaos (GOE). At
a rather small A value, approximately corresponding to
the situation when the nondiagonal matrix elements are
of the same size as the level spacing between the diagonal
matrix elements, the energy-level fluctuations show GOE
properties. This is particularly obvious for the NND. For
the long-range correlations like A3 statistics, X3, and the
variance of Ag, the GOE properties also appear for such
small A values, but only over a finite stretch of energy
levels. These differences between long-range and short-
range fluctuation measures could be understood in terms
of a localization of the wave functions. (See also the
discussion on band random matrices and on the kicked
rotor in [20], as well as the discussion on a RMT model
in [15].) Expressing the localization length of the wave
functions through Fermi’s Golden Rule we could obtain
a relation between the length of these correlations, Lax,
and the size of the perturbation, A. Consequently, by
obtaining L.x from a Aj analysis based on a stretch of
measured energy states, one may obtain indirectly an es-
timate of the average size of the residual interaction that
is responsible for breaking the quantum numbers related
to the studied (unperturbed) energy levels.

The chaotic features of the system are thus far from
being global for A « 1, but rather, we may have an
energy spectrum where eigenstates show (translational
invariant) local chaos.

At much larger A values the wave function compo-
nents become Gaussian distributed, and the wave func-
tions become completely delocalized. This is connected
with a rather drastic decrease in the level density, ap-
proaching the Wigner semicircle distribution. Both the
level density and the wave function component distribu-
tion are mainly to be considered as global (rather than
local) properties.

Recently it has been realized that also the motion of
eigenvalues (level dynamics) shows universality. We con-
centrated on one statistical property, the distribution of
curvatures, which is a measurable quantity for many sys-
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tems. Not until the chaoticity parameter, A, is (approx-
imately) equal to 1, i.e., the model is more or less identi-
cal to GOE, does the distribution of curvatures saturate
and coincide with the generic distribution [Eq. (14)]. In
our study this is thus the strongest requirement on the
spectrum properties to be of GOE character. For some
physical systems the curvature may be experimentally
deduced, as, for example, the magnetic susceptibility. In
the case of a rapidly rotating atomic nucleus the variable
I may be considered as the angular momentum and, as
was mentioned above, the curvature then corresponds to
the negative and inverse of the dynamical moment of in-
ertia. This is a physical property that can be measured
also for quite excited states [21]. However, due to the
quantum mechanical feature of angular momentum, the
dynamical moment of inertia is obtained as a finite dif-
ference (with step size 2k in angular momentum). We
have therefore tested the sensitivity on stepsize in calcu-

lating the curvature distributions. It was found that the
curvature distribution for small A values becomes quite
different for a large stepsize (say §1=0.5) than for a small
stepsize (61<107*), while it is rather independent of the
stepsize for A=1. This seems to imply a generic curva-
ture distribution [Eq. (14)] also for curvatures obtained
by finite size differences.
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